(
Microsoft TCP/IP VxD Interface

Specification
Windows Networking Design Team

Version 1.0

October 24, 1994
Distribution: External Development Distribution

© Copyright Microsoft Corporation, 1994. All Rights Reserved

1

1. Introduction

2. Structures
2

2.1. The TDI_REQUEST structure:
2

2.2. The NDIS_BUFFER structure:
3

2.3. The TRANSPORT_ADDRESS and TA_ADDRESS structures:
3

2.4. The TDI_CONNECTION_INFORMATION structure:
4

2.5. The EventRcvBuffer structure:
5

2.6. The ConnectEventInfo structure:
5

2.7. The TdiDispatchTable structure:
6

3. Binding with the MS TCP/IP-32 VxD
7

4. Communication using the TDI interface
8

5. Descriptions of TDI functions
9

5.1. TdiOpenAddress
9

5.2. TdiCloseAddress
9

5.3. TdiOpenConnection
10

5.4. TdiCloseConnection
10

5.5. TdiAssociateAddress
10

5.6. TdiDisAssociateAddress
11

5.7. TdiConnect
11

5.8. TdiDisconnect
11

5.9. TdiListen
12

5.10. TdiAccept
13

5.11. TdiReceive
14

5.12. TdiSend
15

5.13. TdiSendDatagram
15

5.14. TdiReceiveDatagram
16

5.15. TdiSetEvent
16

5.16. TDI_EVENT_CONNECT
17

5.17. TDI_EVENT_DISCONNECT
17

5.18. TDI_EVENT_ERROR
18

5.19. TDI_EVENT_RECEIVE
18

5.20. TDI_EVENT_RECEIVE_DATAGRAM
20

5.21. TDI_EVENT_RECEIVE_EXPEDITED
21

5.22. TdiQueryInformation
22

5.23. TdiSetInformation
22

5.24. TdiActionInformation
22

 AUTONUMLGL
Introduction

The interface to the Microsoft TCP/IP-32 VxD is a variant of the Transport Device Interface (TDI) defined for NT. The primary difference between the two interfaces is that under NT requests are made using IRPs, while in the VxD environment requests are made by pushing parameters on the stack and calling a function indirectly through a pointer. The primitives in the interface are substantially the same, and the reader is referred to the base NT TDI document for more information on the interface in general. This document will summarize the (minor) differences between the two environments and describe the VxD calling conventions.

This document assumes a basic familiarity with VxD programming issues such as VxD services and the use of the VMM. For more information on these topics consult the Microsoft Windows 3.1 DDK.

 AUTONUMLGL
Structures

There are several structures used on the interface. Some of the most important ones are described here. In the following descriptions the following typedefs are used:

typedef unsigned long ulong;

typedef unsigned short ushort;

typedef unsigned char uchar;

typedef unsigned int uint;

typedef void (*CTEReqCmpltRtn)(void *Context, TDI_STATUS FinalStatus, uint ByteCount);

 AUTONUMLGL
The TDI_REQUEST structure:

The TDI_REQUEST structure is defined in the file TDI.H as

typedef struct _TDI_REQUEST {

 union {

 HANDLE AddressHandle;

 CONNECTION_CONTEXT ConnectionContext;

 HANDLE ControlChannel;

 } Handle;

 PVOID RequestNotifyObject;

 PVOID RequestContext;

 TDI_STATUS TdiStatus;

} TDI_REQUEST, *PTDI_REQUEST;

A pointer to a TDI_REQUEST structure is passed into every VxD TDI call. The VxD TDI client must fill in the structure before invoking the VxD. The Handle field will contain either an address object handle or a connection context, depending on the call. The RequestNotifyObject is set to be a pointer to a client supplied callback function that TCP will call when the request finally completes, if (and only if) the request returned TDI_PENDING when it was first invoked. Note that a callback can happen before the call to the function returns. The RequestContext will be passed back unchanged as a parameter to the callback function when it is called. The TdiStatus field is unused. The prototype for the callback function is

void

Callback(PVOID Context, TDI_STATUS FinalStatus, unsigned long ByteCount);

where Context is the RequestContext originally specified by the client in the TDI_REQUEST, FinalStatus is the completion status of the command, and ByteCount is the count of bytes sent or received. This final parameter is unused for some commands. The type CTEReqCmpltRtn is defined as a pointer to a Callback routine.

TDI_REQUEST structures are ephemeral. The VxD will copy any needed information out of them before the initial invocation completes, and the client may reuse them immediately.

 AUTONUMLGL
The NDIS_BUFFER structure:

NDIS_BUFFERs are defined in NDIS.H. In the NT world, NDIS_BUFFERs are MDLs, but in the VxD world they are essentially buffer descriptors consisting of a length, pointer, and a next field. See the file NDIS.H for more details. Chains of NDIS_BUFFERs may be used to pass in scatter/gather lists of buffers for sending and receiving. NDIS_BUFFER chains must be NULL terminated. Both the NDIS_BUFFER structure itself and the buffer pointed to by the NDIS_BUFFER structure must be locked down and validated before being passed to the transport. VxD TDI clients may use the macros and functions for managing buffers provided by the NDIS wrapper (ndis.386) and described in the NDIS 3.0 specification, or they may create and initialize NDIS_BUFFERs themselves. NDIS_BUFFER chains submitted to the transport must not be altered while the request with which they were submitted is outstanding.

 AUTONUMLGL
The TRANSPORT_ADDRESS and TA_ADDRESS structures:

These structures are used for describing transport addresses passed to the VxD transport. They are defined in TDI.H as follows:

typedef struct _TA_ADDRESS {

 USHORT AddressLength; // length in bytes of Address[] in this

 USHORT AddressType; // type of this address

 UCHAR Address[1]; // actually AddressLength bytes long

} TA_ADDRESS, *PTA_ADDRESS;

typedef struct _TRANSPORT_ADDRESS {

 LONG TAAddressCount; // number of addresses following

 TA_ADDRESS Address[1]; // actually TAAddressCount elements long

} TRANSPORT_ADDRESS, *PTRANSPORT_ADDRESS;

A TRANSPORT_ADDRESS is a counted array of TA_ADDRESSs. Each TA_ADDRESS describes one address. For the TCP VxD the AddressType field should be TDI_ADDRESS_IP, defined in TDI.H as

#define TDI_ADDRESS_TYPE_IP ((USHORT)2) // internetwork: UDP, TCP, etc.

Then the Address Length field of the TA_ADDRESS should be set to TDI_ADDRESS_LENGTH_IP, and the Address field is really a structure of type TDI_ADDRESS_IP. These are defined in TDI.H as

typedef struct _TDI_ADDRESS_IP {

 USHORT sin_port;

 ULONG in_addr;

 UCHAR sin_zero[8];

} TDI_ADDRESS_IP, *PTDI_ADDRESS_IP;

#define TDI_ADDRESS_LENGTH_IP sizeof (TDI_ADDRESS_IP)

The TDI_ADDRESS_IP structure is similar to the sockaddr structure used in Windows Sockets.

 AUTONUMLGL
The TDI_CONNECTION_INFORMATION structure:

A TDI_CONNECTION_INFORMATION structure is used for passing in and out information used for establishing connections. This structure is defined in TDI.H as follows:

typedef struct _TDI_CONNECTION_INFORMATION {

 LONG UserDataLength; // length of user data buffer

 PVOID UserData; // pointer to user data buffer

 LONG OptionsLength; // length of following buffer

 PVOID Options; // pointer to buffer containing options

 LONG RemoteAddressLength; // length of following buffer

 PVOID RemoteAddress; // buffer containing the remote address

} TDI_CONNECTION_INFORMATION, *PTDI_CONNECTION_INFORMATION;

For the TCP VxD, the fields are used as follows:

UserDataLength and UserData are unused.

OptionsLength and Options are the length of and pointer to a buffer containing IP options. If there are no options, they must be set to 0 and NULL.

RemoteAddressLength and RemoteAddress are the length of and pointer to a buffer that is filled out as a TRANSPORT_ADDRESS structure.

TDI_CONNECTION_INFORMATION structures are not copied by the transport. They must be preserved intact until the request with which they are issued completes.

 AUTONUMLGL
The EventRcvBuffer structure:

An EventRcvBuffer is a structure used to pass information about buffers and completion routines for data delivered via a receive indication. A pointer to an EventRcvBuffer (ERB) is passed to the client as a parameter to the indication routine. The client may elect to fill in the ERB with the appropriate information and return TDI_MORE_PROCESSING. In this case the transport will examine the ERB and take the appropriate actions. The ERB structure is defined in TDIVXD.H.

typedef struct EventRcvBuffer {

PNDIS_BUFFER
erb_buffer;

uint

erb_size;

CTEReqCmpltRtn
erb_rtn;

// Completion routine.

PVOID

erb_context;

// User context.

ushort

*erb_flags;

// Pointer to user flags.

} EventRcvBuffer;

The erb_buffer field is to be filled in with a pointer to an NDIS_BUFFER chain describing buffers into which the received data will be placed. The erb_size field defines the maximum amount of data that may be copied into the buffer chain. The total of the sizes of all of the NDIS_BUFFERs in the chain must be greater than or equal to erb_size. If the total is greater than erb_size only erb_size bytes will be copied. The NDIS_BUFFER chain must remain intact until the request completes.

The erb_rtn field is a pointer to a callback routine that will be called when the request is complete. The prototype for the routine is the same as for the Callback() routine described above. The Context passed to the callback routine is erb_context.

The erb_flags field is a pointer to a short of flags. This dword will be altered by the transport when the request completes to provide the client with the output flags. The flags pointer must not be NULL. For this release erb_flags must point at a 16 bit value of 0. When the request completes the flags will be set to (TDI_RECEIVE_NORMAL | TDI_RECEIVE_ENTIRE_MESSAGE) for normal data, and (TDI_RECEIVE_EXPEDITED | TDI_RECEIVE_ENTIRE_MESSAGE) for urgent data.

 AUTONUMLGL
The ConnectEventInfo structure:

The ConnectEventInfo structure is a structure passed by the transport to the client during a connect event indication.

typedef struct ConnectEventInfo {

CTEReqCmpltRtn

cei_rtn;
// Completion routine.

PVOID

cei_context;
// User context.

PTDI_CONNECTION_INFORMATION
cei_acceptinfo;

PTDI_CONNECTION_INFORMATION
cei_conninfo;

} ConnectEventInfo;

The cei_rtn and cei_context fields are pointers to a Callback routine and a Context for that routine. The routine will be called when the connect completes.

The cei_acceptinfo field points to a TDI_CONNECTION_INFORMATION structure providing information for use in accepting the connection. The only fields used in this structure are the OptionsLength and Options fields. This field may be NULL.

The cei_conninfo field points to a structure that the TCP VxD will fill in with information regarding the remote peer when the connection is complete. This field may be NULL.

 AUTONUMLGL
The TdiDispatchTable structure:

The TdiDispatchTable is a structure that the client gets from the VTDI VxD. This structure is a table of entry points into the TCP VxD. Each of the individual entry points will be described below. An entry point may be called by calling indirectly through the corresponding function pointer in the TdiDispatchTable. The table is defined in TDIVXD.H as

struct TDIDispatchTable {

TDI_STATUS
(*TdiOpenAddressEntry)(PTDI_REQUEST, PTRANSPORT_ADDRESS, uint,

PVOID);

TDI_STATUS
(*TdiCloseAddressEntry)(PTDI_REQUEST);

TDI_STATUS
(*TdiOpenConnectionEntry)(PTDI_REQUEST, PVOID);

TDI_STATUS
(*TdiCloseConnectionEntry)(PTDI_REQUEST);

TDI_STATUS
(*TdiAssociateAddressEntry)(PTDI_REQUEST, HANDLE);

TDI_STATUS
(*TdiDisAssociateAddressEntry)(PTDI_REQUEST);

TDI_STATUS
(*TdiConnectEntry)(PTDI_REQUEST, PVOID,

PTDI_CONNECTION_INFORMATION,

PTDI_CONNECTION_INFORMATION);

TDI_STATUS
(*TdiDisconnectEntry)(PTDI_REQUEST, PVOID, ushort,

PTDI_CONNECTION_INFORMATION,

PTDI_CONNECTION_INFORMATION);

TDI_STATUS
(*TdiListenEntry)(PTDI_REQUEST, ushort,

PTDI_CONNECTION_INFORMATION,

PTDI_CONNECTION_INFORMATION);

TDI_STATUS
(*TdiAcceptEntry)(PTDI_REQUEST, PTDI_CONNECTION_INFORMATION,

PTDI_CONNECTION_INFORMATION);

TDI_STATUS
(*TdiReceiveEntry)(PTDI_REQUEST, ushort *, uint *, PNDIS_BUFFER);

TDI_STATUS
(*TdiSendEntry)(PTDI_REQUEST, ushort, uint, PNDIS_BUFFER);

TDI_STATUS
(*TdiSendDatagramEntry)(PTDI_REQUEST,

PTDI_CONNECTION_INFORMATION,

uint, uint *, PNDIS_BUFFER);

TDI_STATUS
(*TdiReceiveDatagramEntry)(PTDI_REQUEST,

PTDI_CONNECTION_INFORMATION,

PTDI_CONNECTION_INFORMATION, uint, uint *, PNDIS_BUFFER);

TDI_STATUS
(*TdiSetEventEntry)(PVOID, int, PVOID, PVOID);

TDI_STATUS
(*TdiQueryInformationEntry)(PTDI_REQUEST, uint,

PNDIS_BUFFER, uint *, uint);

TDI_STATUS
(*TdiSetInformationEntry)(PTDI_REQUEST, uint,

PNDIS_BUFFER, uint, uint);

TDI_STATUS
(*TdiActionEntry)(PTDI_REQUEST, uint,

PNDIS_BUFFER, uint);

TDI_STATUS
(*TdiQueryInformationExEntry)(PTDI_REQUEST,

struct TDIObjectID *, PNDIS_BUFFER, uint *, void *);

TDI_STATUS
(*TdiSetInformationExEntry)(PTDI_REQUEST,

struct TDIObjectID *, void *, uint);

};

typedef struct TDIDispatchTable TDIDispatchTable;

 AUTONUMLGL
Binding with the MS TCP/IP-32 VxD

In order to communicate with the TCP/IP VxD, a client must first get a pointer to the TdiDispatchTable for the VxD. This is done by communicating with the VTDI VxD. This VxD provides a service (VTDI_Get_Info) that takes in a protocol name and returns a pointer to a TdiDispatchTable. VTDI is device ID 0x488. A client VxD should call this service during Device_Init time. In order to initialize properly, a client VxD should have an initialization order of at least 0xc000 + VNETBIOS_Init_Order.

VTDI_Get_Info takes the name of the protocol VxD as a parameter on the stack (as a case sensitive NULL terminated ASCII string), and returns the pointer to the TdiDispatchTable in EAX. EAX will be 0 if the named protocol does not exist. The name of the MS TCP/IP-32 VxD is “MSTCP”.

The following assembly code illustrates how to get the dispatch table

VTDI_Device_ID
equ
0488h

include
vtdi.inc

VxD_IDATA_SEG

TCPName
db
‘MSTCP’, 0

VxD_IDATA_ENDS

VxD_ICODE_SEG

BeginProc GetTCPDispatchTable

; Make sure VTDI is present

VxDcall
VTDI_Get_Version

jc short Failure

; VTDI is present. Get a pointer to the TCP dispatch table

push
OFFSET32 TCPName

VxDcall
VTDI_Get_Info

add
esp, 4

; EAX contains a pointer to the DispatchTable, or 0 if TCP isn’t available.

ret

Failure:

; VTDI isn’t present.

sub
eax, eax

ret

EndProc GetTCPDispatchTable

VxD_ICODE_END

 AUTONUMLGL
Communication using the TDI interface

Communications through TDI center around two abstractions: the address object and the connection. An address object is the representation of a local address (IP address/port number/protocol ID). An address object is opened via the TdiOpenAddress primitive, which specifies the necessary information. The IP address specified may be 0, indicating a wildcard local address. The TdiOpenAddress call returns a HANDLE which the client uses to identify the address object in subsequent calls.

An address object may have one or more event handlers associated with it. An event handler is a client specified routine that the TCP VxD will call when certain events occur. The most popular event handlers are connect event handlers, receive data and receive datagram event handlers, and disconnect event handlers. Connect event handlers are routines that the TCP VxD will call when an incoming connect request (a TCP frame with the SYN bit set with no ACK) is received. The client may inspect the remote address and accept or reject the connection. Receive data and datagram handlers are routines that are called when incoming data or datagrams are received. Disconnect event handlers are called when a TCP connection is being torn down, either gracefully via receipt of a FIN or abortively due to a RST or timeout. Clients specify event handlers via the TdiSetEvent primitive. More information on event handlers may be found in the NT TDI documentation and in the section below describing the TdiSetEvent function.

An address object handle is all that is needed for UDP traffic. A client may send and receive via UDP without opening a connection. Datagrams are sent with TdiSendDatagram, and may be received with either TdiReceiveDatagram or via a receive datagram event handler.

A connection represents the local side of a TCP connection. Connections are opened via TdiOpenConnection. Initially, the connection is ‘blank’, unassociated with any local address. Clients associate a connection with a local address via TdiAssociateAddress. This routine takes as input a connection context and an address object handle, and associates the connection with the local address represented by the address object. After this is done a connection to a remote host may be established via TdiConnect, or the connection may be placed into the listening state via TdiListen. As an alternative to TdiListen clients may set a connect event handler on the associated address object. This is the recommended alternative for VxD TDI clients.

Once a connection is established data may be sent with TdiSend. Data may be received with either TdiReceive or a receive data event handler. TCP connections are torn down with TdiDisconnect. This primitive specifies whether the disconnection is to be graceful or abortive. A graceful disconnect results in a FIN being sent. The disconnect will complete when this FIN is ACKed. The connection will not be completely gone until this remote peer has sent a FIN and this FIN has been ACKed. Receipt of a FIN from the remote side will result in a DisconnectWait request being complete, or a disconnect event handler being called. If there is no disconnect event handler set or DisconnectWait primitive outstanding the client will not be notified. A client may receive a graceful disconnect notification before issuing a disconnect request.

An abortive disconnect destroys the connection immediately by sending a RST. Receiving a RST will result in a client being notified via event handler or DisconnectWait primitives.

Connections are closed via TdiCloseConnection. Closing an established connection will result in a RST being sent. Closing a connection is different from disconnecting a connection. A disconnected connection is still around, associated with an address, and may be connected again via TdiConnect. Closing a connection results in the connection object itself being destroyed.

 AUTONUMLGL
Descriptions of TDI functions

This section gives brief descriptions of the available TDI functions, and notes where there are differences between the VxD version and the NT version. For more detailed information on these functions refer to the NT TDI document.

 AUTONUMLGL
TdiOpenAddress

TDI_STATUS

TdiOpenAddress(PTDI_REQUEST Request, TRANSPORT_ADDRESS *AddrList, uint Protocol, void *Ptr)

Called via the TdiOpenAddressEntry pointer in the TdiDispatchTable structure.

This function is called to open an address object.

AddrList points to a TRANSPORT_ADDRESS structure.

Protocol is the protocol number for the protocol with which the address is to be associated. Protocol is 17 (decimal) for UDP and 6 (decimal) for TCP.

Ptr is a pointer to a byte string of options for the opening of this address object. Ptr may be NULL. The options are:

#define
TDI_OPTION_EOL

0

#define
TDI_ADDRESS_OPTION_REUSE
1

#define
TDI_ADDRESS_OPTION_DHCP
2

TDI_OPTION_EOL terminate the list. TDI_ADDRESS_OPTION_REUSE allows the address to be ‘reused’, in the fashion of the Windows Sockets REUSE_ADDR option. TDI_ADDRESS_OPTION_DHCP allows the client to override the usual interpretation of 0.0.0.0 as the wildcard address. If the client specifies this option then 0.0.0.0 will be the actual address transmitted. If this option is specified then the client must specify 0.0.0.0 in the AddrList structure. If this option is not specified and the client is opening 0.0.0.0 then the open is interpreted as a wildcard open, and IP will choose an appropriate IP address as needed. The address selection in this case is done on a per request basis, i.e. each time a datagram send is submitted or a connection using the address object is established. TDI_ADDRESS_OPTION_DHCP is intended for use by DHCP clients. Most clients do not need to set this option.

Opening an address object with a sin_port of 0 causes the transport to select an unused port. This port selection is done only once, as the time the address object is opened.

This function will return an address object handle in the Request->Handle.AddressHandle field.

 AUTONUMLGL
TdiCloseAddress

TDI_STATUS

TdiCloseAddress(PTDI_REQUEST Request)

Called via the TdiCloseAddressEntry pointer in the TdiDispatchTable structure.

This function is called to close an address object. The address object to be closed is specified in the Request->Handle.AddressHandle field. Closing an address object abortively disconnects any active connections associated with the address object, and disassociates all associated connections. Receive datagram requests are aborted. The request does not complete until all pending datagram sends are completed; however, no new datagram sends may be submitted after a CloseAddress request has been submitted.

 AUTONUMLGL
TdiOpenConnection

TDI_STATUS

TdiOpenConnection(PTDI_REQUEST Request, PVOID Context)

Called via the TdiOpenConnectionEntry pointer in the TdiDispatchTable structure.

This primitive opens a connection object. The connection object is initially unassociated with and address object. Context is a context value that is passed back to the client on receive data and disconnect events. This function returns the connection handle in the Request->Handle.ConnectionContext field.

 AUTONUMLGL
TdiCloseConnection

TDI_STATUS

TdiCloseConnection(PTDI_REQUEST Request)

Called via the TdiCloseConnectionEntry pointer in the TdiDispatchTable structure.

This primitive is called to close a TDI connection. The connection to be closed is specified via the Request->Handle.ConnectionContext field. If a TCP connection is active through the connection being closed it will be abortively disconnected and a RST will be sent.

 AUTONUMLGL
TdiAssociateAddress

TDI_STATUS

TdiAssociateAddress(PTDI_REQUEST Request, HANDLE AddrHandle)

Called via the TdiAssociateAddressEntry pointer in the TdiDispatchTable structure.

This primitive associates a connection object with an address object. An association must be done before a TCP connection can be established through a connection object. The connection to be associated is specified in the Request->Handle.ConnectionContext field. AddrHandle identifies the address object with which the connection is to be associated. A connection object may not be associated with an address object if it is already associated with another address object.

 AUTONUMLGL
TdiDisAssociateAddress

TDI_STATUS

TdiDisAssociateAddress(PTDI_REQUEST Request)

Called via the TdiDisAssociateAddressEntry pointer in the TdiDispatchTable structure.

A primitive to disassociate a connection object from an address object. The connection object must not be connected to a remote peer when this primitive is called. Request->Handle.ConnectionContext identifies the connection to be disassociated.

 AUTONUMLGL
TdiConnect

TDI_STATUS

TdiConnect(PTDI_REQUEST Request, void *TO, PTDI_CONNECTION_INFORMATION RequestAddr, PTDI_CONNECTION_INFORMATION ReturnAddr)

Called via the TdiConnectEntry pointer in the TdiDispatchTable structure.

This functions establishes a TCP connection through the connection object identified in Request->Handle.ConnectionContext. The connection object must be associated with an address object before calling this function.

RequestAddr specifies the remote address to be connected. It must specify a valid, unicast IP address. RequestAddr may also specify IP options (such as source route).

ReturnAddr is filled in by TCP with the remote address actually connected. For TCP this will always be the same as RequestAddr. ReturnAddr also indicates which IP options (if any) are actually in use on the established connection.

TO points to a timeout value indicating how long to keep trying to connect before giving up. This value must be a 32 bit unsigned integer. The units are milliseconds. TO may be NULL, indicating that the transport is to pick a suitable timeout. Pointing TO at a value of 0 is the same as setting TO to NULL.

 AUTONUMLGL
TdiDisconnect

TDI_STATUS

TdiDisconnect(PTDI_REQUEST Request, void *TO, ushort Flags,

 PTDI_CONNECTION_INFORMATION DiscConnInfo,

 PTDI_CONNECTION_INFORMATION ReturnInfo)

Called via the TdiDisconnectEntry pointer in the TdiDispatchTable structure.

This is the primitive to disconnect an established connection. The connection to be disconnected is specified via Request->Handle.ConnectionContext. A connection may be abortively or gracefully disconnected. An abortive disconnect results in a RST being sent. A graceful disconnect results in a FIN being sent, and the graceful disconnect will not complete until the FIN is ACKed or the disconnect times out. If a connection is being gracefully disconnected the disconnection is not complete until both sides have disconnected. A client may be notified of the remote peers disconnect via a DisconnectWait request or a disconnect event notification. Once a client has been notified that the remote side has disconnected and had a graceful disconnect of its own complete the connection is gone. An abortive disconnect, however, is unilateral. Once either side has issued an abortive disconnect the connection is terminated.

A disconnect results is all outstanding requests on the connection completing. A graceful disconnect does not complete until all outstanding send requests have been sent and acknowledged, or until the disconnect timeout occurs.

TO is a timeout value indication how long to wait for the disconnection to complete. It has the same semantics as the TO value for TdiConnect().

Flags identifies the disconnect type. It may take on one of the following values:

TDI_DISCONNECT_ABORT - Specifies that this is to be an abortive disconnect.

TDI_DISCONNECT_WAIT - Specifies that this is a disconnect wait request. This type of request results in no protocol action. The disconnect request is in a pending state until the remote peer issues a disconnect. This command may be used to receive disconnect notifications without a disconnect event handler, although the event handler approach is the recommended mechanism.

If neither of these flags is set the disconnect is considered to be graceful.

DiscConnInfo and ReturnInfo are unused and may be set to NULL.

 AUTONUMLGL
TdiListen

TDI_STATUS

TdiListen(PTDI_REQUEST Request, ushort Flags, PTDI_CONNECTION_INFORMATION AcceptableAddr, PTDI_CONNECTION_INFORMATION ConnectedAddr)

Called via the TdiListenEntry pointer in the TdiDispatchTable structure.

This primitive puts a connection (specified via Request->Handle.ConnectionContext) into the listening state. Incoming connection requests are first matched against possible connections in the listening state. If no match is found the connection request is passed to the Connect Event handler, if there is one. Most VxD clients should use the TDI_CONNECT_EVENT event handler instead of using this primitive.

AcceptableAddr specifies the possible acceptable remote addresses that might connect to the listening connection. The address portion may contain a wildcard (0.0.0.0) IP address, meaning that any remote IP address with the specified port may connect. The Options and OptionsLength fields may specify IP options to be used on this connection. These options will override any specified by the remote peer.

ConnectedAddr will be filled in with the address which connected and the IP options (if any) active on this connection if (and only if) the connection completes successfully.

Flags may be set to 0 or TDI_QUERY_ACCEPT. If TDI_QUERY_ACCEPT is set the listen will complete with success and the ConnectedAddr field filled in when an acceptable connection request is received, but the connection will not actually be established. The client must then call TdiAccept to complete the connection or TdiDisconnect (with TDI_DISCONNECT_ABORT set) to reject the connection. If TDI_QUERY_ACCEPT is not set the connection is completely established when the TdiListen request completes successfully.

 AUTONUMLGL
TdiAccept

TDI_STATUS

TdiAccept(PTDI_REQUEST Request, PTDI_CONNECTION_INFORMATION AcceptInfo,

 PTDI_CONNECTION_INFORMATION ConnectedInfo)

Called via the TdiAcceptEntry pointer in the TdiDispatchTable structure.

This primitive accepts a connection on a connection object that had previously had a TdiListen request with TDI_QUERY_ACCEPT complete successfully.

AcceptInfo is used to provide IP options to the transport. These options, if present, will override any specified by the remote peer. AcceptInfo may be set to NULL.

ConnectedInfo is filled in by the transport when the request completes, and provides the client with the remote address connected and IP options active on the connection.

 AUTONUMLGL
TdiReceive

TDI_STATUS

TdiReceive(PTDI_REQUEST Request, ushort *Flags, uint *RcvLength,

 PNDIS_BUFFER Buffer)

Called via the TdiReceiveEntry pointer in the TdiDispatchTable structure.

This request receives data on a connected connection. If no data is currently available on the connection the request will pend until there is data. A receive request may specify whether normal data, urgent data, or either may be placed in the given buffer. The connection on which a receive is issued must be connected and must not have received a FIN.

The Flags parameter is used both to specify the type of data which may be placed in the buffer and to return the type of data actually placed in the buffer. On input, *Flags may be 0, TDI_RECEIVE_NORMAL, TDI_RECEIVE_EXPEDITED, or (TDI_RECEIVE_NORMAL | TDI_RECEIVE_EXPEDITED). If *Flags is 0 MSTCP will interpret it as TDI_RECEIVE_NORMAL. Flags must not be set to NULL. If *Flags is set to TDI_RECEIVE_EXPEDITED only urgent data will be placed in the buffer. When the request completes successfully *Flags will be set to either TDI_RECEIVE_NORMAL or TDI_RECEIVE_URGENT. Also, the TDI_RECEIVE_ENTIRE_MESSAGE bit is set in *Flags on completion. The transport will not combine urgent and normal data into one buffer chain. See the NT TDI documentation for more details on the flags.

RcvLength specifies the total length in bytes of data that may be placed in the buffer chain pointed to by Buffer. This length may be less than the sum of the sizes of the individual buffers in the chain, but it may not be greater than this sum. If the *RcvLength is smaller than the actual size of the buffer chain only *RcvLength bytes will be placed in the buffer. For example, if Buffer points to a chain of 3 100 byte buffers, but *RcvLength is set to 100 on input, only the first buffer in the chain would be used. If the TdiReceive requests completes immediately with success *RcvLength will be set by the transport to the actual number of bytes received. If the request pends or fails *RcvLength is unused. Thus RcvLength needs to be valid only for the duration of the actual call to TdiReceive, not until the time the receive completes. If the receive request pends the number of bytes received will be returned as the ByteCount parameter passed to the request completion callback routine.

Buffer points to an NDIS_BUFFER chain into which data will be copied. The individual buffers in this chain must be locked before submitting them.

 AUTONUMLGL
TdiSend

TDI_STATUS

TdiSend(PTDI_REQUEST Request, ushort Flags, uint SendLength,

 PNDIS_BUFFER SendBuffer)

Called via the TdiSendEntry pointer in the TdiDispatchTable structure.

This primitive causes data to be sent on the connection identified by Request->Handle.ConnectionContext. The specified connection must be established and must not have been disconnected. A send request does not complete until the remote peer has ACKed the data. The number of bytes of data sent is returned as the ByteCount parameter to the completion callback routine. This value will always be equal to SendLength if the send completes successfully.

Flags may be set to 0 or TDI_SEND_EXPEDITED. If TDI_SEND_EXPEDITED is set, the specified data is sent as urgent data. By default MSTCP uses BSD style urgent data, and thus allows only one byte of urgent data to be sent. If more than one byte is submitted as urgent only the last byte of the send is marked as such. A connection may be configured to use RFC 1122 style urgent data, in which case all data will be sent as urgent.

SendLength specifies the length in bytes of the data to be sent. This value MUST be equal to the sum of the sized of the individual NDIS_BUFFERs in the SendBuffer chain.

SendBuffer points to a chain of NDIS_BUFFERs to be sent. All buffers in this chain must be locked before the send is submitted, and the data in the buffers must not be altered until the send completes.

 AUTONUMLGL
TdiSendDatagram

TDI_STATUS

TdiSendDatagram(PTDI_REQUEST Request, PTDI_CONNECTION_INFORMATION ConnInfo,

 uint DataSize, uint *BytesSent, PNDIS_BUFFER Buffer)

Called via the TdiSendDatagramEntry pointer in the TdiDispatchTable structure.

This request submits a datagram send request on the address object identified by Request->Handle.AddressHandle. The local address for the datagram is derived from the specified address object. If the address object was opened with a local IP address of 0.0.0.0 the transport will choose an appropriate valid local address. The maximum size of a datagram send if 0xffff - sizeof(UDP Header). The transport will fail a send attempt with a size larger than this. The datagram send is not buffered by the transport, and does not complete until the underlying link layer is finished sending the data.

ConnInfo specifies the remote address to which the datagram is to be sent. The address must be fully specified without wildcards. ConnInfo is not used to specify IP options for the send. These options may only be set on a per-address object basis, not on a per send basis.

DataSize specifies the size in bytes of the data to be sent. This size must be equal to the sum of the sizes of the NDIS_BUFFERs in the Buffer chain.

BytesSent is a pointer to where the transport may fill in the bytes of data sent in the event that the request completes immediately with TDI_SUCCESS. If the request pends for later completion the bytes of data sent will be returned as the ByteCount parameter to the completion callback routine. This parameter will always be equal to DataSize if the request completes successfully.

Buffer points to a chain of NDIS_BUFFERs to be sent. All buffers in this chain must be locked before the send is submitted, and the data in the buffers must not be altered until the send completes.

 AUTONUMLGL
TdiReceiveDatagram

TDI_STATUS

TdiReceiveDatagram(PTDI_REQUEST Request, PTDI_CONNECTION_INFORMATION ConnInfo,

 PTDI_CONNECTION_INFORMATION ReturnInfo, uint RcvSize, uint *BytesRcvd,

 PNDIS_BUFFER Buffer)

Called via the TdiReceiveDatagramEntry pointer in the TdiDispatchTable structure.

This request submits a receive datagram request on the address object identified by Request->Handle.AddressHandle. MSTCP does not buffer incoming datagrams - if a datagram arrives and there is neither a receive datagram request posted nor a receive datagram event handler to be called the datagram is dropped.

ConnInfo points to a structure describing remote addresses from which remote datagrams may be received. The addresses specified may contain wildcards. Incoming datagrams are only placed in receive datagram buffers that have matching remote addresses or wildcards in the ConnInfo structure. ConnInfo may be NULL, in which case any incoming datagram may use the buffer.

ReturnInfo points to a structure that will be filled in with the address of the remote entity that sent the datagram, as well as any IP options received with the datagram.

RcvSize is the maximum size in bytes of data that may be received. If RcvSize is less than the sum of the sizes of the buffers in the Buffer chain, only the first RcvSize bytes of the chain will be filled in.

BytesRcvd is a pointer to where the transport may fill in the bytes of data sent in the event that the request completes immediately with TDI_SUCCESS. If the request pends for later completion the bytes of data sent will be returned as the ByteCount parameter to the completion callback routine.

Buffer is a pointer to a NULL terminated list of NDIS_BUFFERs of data to be sent. All buffers in the chain must be locked, and the chain must not be altered while the request is outstanding.

 AUTONUMLGL
TdiSetEvent

TDI_STATUS

TdiSetEvent(PVOID Handle, int Type, PVOID Handler, PVOID Context)

Called via the TdiSetEventEntry pointer in the TdiDispatchTable structure.

This primitive sets a TDI event handler. These event handlers are pointers to routines that the VxD TCP stack will call when certain conditions occur, such as data arriving or a connection being disconnected. Event handlers are set on a per address object basis. The address object on which the handler is being set is identified by Handle.

Type specifies which TDI event handler is being set. The valid types are TDI_EVENT_CONNECT, TDI_EVENT_DISCONNECT, TDI_EVENT_ERROR, TDI_EVENT_RECEIVE, TDI_EVENT_RECEIVE_DATAGRAM, and TDI_EVENT_RECEIVE_EXPEDITED. More detail on what each of these events does is given below.

Handler is the function pointer for the function to be called when an event of type Type occurs. Prototypes for each event type are given below. Setting an event handler to NULL disables that event.

Context is a client supplied value that is passed to the function identified by Handler when it is called. This Context is not used by all events.

Description of the events:

 AUTONUMLGL
TDI_EVENT_CONNECT

The event handler for this event is called when an incoming connection request arrives (a SYN frame) for a local address represented by the specified address object and there is no connection in the listening state that could handle the request. The called client must indicate either acceptance or rejection of the connection by the return code from the call. If the client returns TDI_MORE_PROCESSING the connection will be accepted. Returning any other return code will cause the connection to be rejected. The prototype for the connect event handler is

TDI_STATUS

ConnectEvent(PVOID EventContext, uint AddressLength, PTRANSPORT_ADDRESS Address, uint UserDataLength, PVOID UserData, uint OptionsLength, PVOID Options, PVOID *AcceptingID, ConnectEventInfo *EventInfo)

where

EventContext is the Context value supplied on the TdiSetEvent call.

AddressLength is the length in bytes of the structure pointed to by Address.

Address is a pointer to a TRANSPORT_ADDRESS structure identifying the remote peer that is attempting to connect. This structure is valid only for the duration of the call to the event handler.

UserDataLength is the length is the length is bytes of the following UserData. This is 0 for MSTCP.

UserData is a pointer to connect data. This is NULL for MSTCP.

OptionsLength is the length in bytes of the following Options.

Options is a pointer to a buffer containing IP options received with the SYN. This buffer is valid only for the duration of the call to the event handler, and may be NULL.

AcceptingID is a pointer to where the called client should store the ConnectionContext of a connection on which to accept the incoming request, if it is to be accepted. This connection must be associated with the address object that received the connect request.

EventInfo is a pointer to a ConnectEventInfo structure. The client may fill in this structure with pointers to information that the transport will use in accepting the connection, and fill in with information about the remote peer when the connect completes. If the connection is accepted the client must minimally fill in the cei_rtn field to a pointer to a Callback routine and set the cei_acceptinfo and cei_conninfo fields to NULL.

 AUTONUMLGL
TDI_EVENT_DISCONNECT

This event handler is called when a connection is disconnecting, either gracefully or abortively. If the connection is gracefully closing the called client must issue a graceful TdiDisconnect to complete the disconnection, if it has not already done so. If the connection is abortively closing the connection is gone at the time the event handler is called and the client need take no further action. An abortive disconnect may occur because a RST was received or because of some sort of timeout. The prototype for the disconnect event handler is

TDI_STATUS

DisconnectEvent(PVOID EventContext, PVOID ConnectionContext, uint DisconnectDataLength, PVOID DisconnectData, uint OptionsLength, PVOID Options, ulong Flags)

where

EventContext is the Context value supplied on the TdiSetEvent call.

ConnectionContext is the Context for the disconnection connection object. This Context was supplied by the client as a parameter to the TdiOpenConnection call that opened the connection.

DisconnectDataLength and DisconnectData are unused and set to 0 and NULL respectively.

OptionsLength is the length in bytes of the following Options.

Options is a pointer to a buffer containing IP options received with the frame containing the FIN or RST, if the disconnect was triggered by an incoming frame. This buffer is valid only for the duration of the call to the event handler, and may be NULL.

Flags identifies the type of disconnect. It is either TDI_DISCONNECT_RELEASE or TDI_DISCONNECT_ABORT.

 AUTONUMLGL
TDI_EVENT_ERROR

This event handler is unused by MSTCP and should not be set.

 AUTONUMLGL
TDI_EVENT_RECEIVE

A receive event handler is called when incoming data arrives for a connection. The called client may take all, some, or none of the indicated data during the call to the handler, and may also optionally pass back a pointer to a buffer to receive remaining or newly arrived data. There are some intricacies relating to when a receive event handler will be called if it has recently been called or there is a receive buffer outstanding. For more information on the consult the NT TDI document.

Since TCP is a stream oriented protocol there is no restriction on the minimum number of bytes that will be indicated in a receive event call.

The prototype for a receive event handler is

TDI_STATUS

RcvEvent(PVOID EventContext, PVOID ConnectionContext, ulong Flags, uint Indicated, uint Available, uint *Taken, uchar *Data, EventRcvBuffer *Buffer)

There are three relevant status codes that the client may return from the call to the event handler. TDI_MORE_PROCESSING indicates that the client has taken some or all of the data, and returned a buffer for more data via the EventRcvBuffer structure. TDI_NOT_ACCEPTED indicates that the client has taken none of the data and has not returned a receive buffer. TDI_SUCCESS indicates that the client has taken some or all of the data but not returned a receive buffer. If TDI_MORE_PROCESSING or TDI_SUCCESS is returned the client must set *Taken to be the count of the number of bytes consumed. If there is data that the client does not consume and there is no receive buffer provided the VxD transport will make a best effort attempt to buffer the data for later consumption. However, if the transport is unable to allocate memory the data is dropped and will need to be retransmitted.

The parameters to the call are defined as

EventContext is the Context value supplied on the TdiSetEvent call.

ConnectionContext is the Context for the connection object receiving the data. This Context was supplied by the client as a parameter to the TdiOpenConnection call that opened the connection.

Flags supplies information about the receive indication. The most interesting flag is TDI_RECEIVE_ENTIRE_MESSAGE. If this flag is set the PUSH bit was set on the segment containing the data being delivered. See the NT TDI documentation for more details on the flags.

Indicated is a count of the number of bytes of data being indicated, i.e. the number of bytes in the buffer pointed to by Data.

Available is the count of the total number of bytes of data available in the transport. This value will always be greater than or equal to Indicated. If Available is greater than Indicated then there is data available than is not being passed up in the event handler, and the called client will need to supply a receive buffer to retrieve it. The receive buffer may be supplied either by returning a pointer in the EventRcvBuffer structure or by calling TdiReceive.

Taken is a pointer to a location where the client may fill in the total number of bytes taken on the indication. The client may set *Taken to 0 if no data was consumed. The maximum value to which *Taken may be set is Available. Note that this may be greater than indicated - this allows the client to skip data that has arrived but not been indicated if it wishes. *Taken is only examined if TDI_MORE_PROCESSING or TDI_SUCCESS is returned. In these cases the transport assumes that the first *Taken bytes of data were consumed by the client, and will not copy this data into a client buffer.

Data is a pointer to a buffer of received data. The length of the buffer is given by Indicated.

Buffer is a pointer to an EventRcvBuffer structure. The client may fill in this structure to give the transport a buffer into which to place data. This structure is only examined if the status TDI_MORE_PROCESSING is returned. The buffer returned by the client may be larger than the size indicated by Available. In this case the buffer will be retained for more arriving data.

 AUTONUMLGL
TDI_EVENT_RECEIVE_DATAGRAM

This event handler is called when an incoming datagram is received. As with the TDI_EVENT_RECEIVE event the called client may take all, some, or none of the data, and may optionally pass back a buffer for unconsumed data. Unlike stream data datagrams are not buffered, so any data the client does not consume is lost if no buffer is provided on the return. Also, MSTCP will not queue datagram receive buffers for later use if they are returned from an event handler, so if a client consumes all of the datagram and passes back a buffer the buffer will be completed immediately with a length of 0.

The prototype for a receive datagram event handler is

TDI_STATUS

RcvDGEvent(PVOID EventContext, uint AddressLength, PTRANSPORT_ADDRESS Address, uint OptionsLength, PVOID Options, uint Flags, uint Indicated, uint Available, uint *Taken, uchar *Data, EventRcvBuffer **Buffer)

The status code that may be returned from a receive datagram event are TDI_MORE_PROCESSING, TDI_NOT_ACCEPTED, and TDI_SUCCESS, and they have the same meaning as when they are returned from an ordinary TDI_EVENT_RECEIVE handler.

The parameters to the call are defined as

EventContext is the Context value supplied on the TdiSetEvent call.

AddressLength is the length in bytes of the structure pointed to by Address.

Address is a pointer to a TRANSPORT_ADDRESS structure identifying the remote peer that sent the datagram. This structure is valid only for the duration of the call to the event handler.

OptionsLength is the length in bytes of the following Options.

Options is a pointer to a buffer containing IP options received with the datagram. This buffer is valid only for the duration of the call to the event handler, and may be NULL if there were no options.

Flags is a set of TDI flags providing more information about the event. In the VxD world they are largely meaningless and may be ignored. See the NT TDI documentation for more details on the flags.

Indicated is a count of the number of bytes of data being indicated, i.e. the number of bytes in the buffer pointed to by Data.

Available is the count of the total number of bytes of data available in the transport. This value will always be greater than or equal to Indicated. If Available is greater than Indicated then there is data available than is not being passed up in the event handler, and the called client will need to supply a receive buffer to retrieve it. The receive buffer must be supplied either by returning a pointer to an EventRcvBuffer structure. If Available is greater than Indicated and the client does not provide an EventRcvBuffer structure the additional data will be lost.

Taken is a pointer to a location where the client may fill in the total number of bytes taken on the indication. The client may set *Taken to 0 if no data was consumed. The maximum value to which *Taken may be set is Indicated. This is different from the TDI_EVENT_RECEIVE handler, where the maximum value of *Taken is Available. If a client wished to consume the indicated data and discard the rest it should return TDI_SUCCESS. *Taken is only examined if TDI_MORE_PROCESSING is returned. In this case the transport assumes that the first *Taken bytes of data were consumed by the client, and will not copy this data into a client buffer.

Data is a pointer to a buffer of received data. The length of the buffer is given by Indicated.

Buffer is a pointer to a pointer to an EventRcvBuffer structure If the client wishes to return a receive buffer it should set *Buffer to a pointer to a filled in EventRcvBuffer structure describing the buffer chain and providing a callback routine.. Note that this is different from the TDI_EVENT_RECEIVE case, where the transport provides the EventRcvBuffer structure and the client merely fills it in. This structure is only examined if the status TDI_MORE_PROCESSING is returned. The client provided EventRcvBuffer structure must remain valid until the completion routine is called. The completion routine is generally called immediately.

 AUTONUMLGL
TDI_EVENT_RECEIVE_EXPEDITED

This event is called to receive urgent data. It is nearly identical to the TDI_EVENT_RECEIVE event; the only difference between the two is that TDI_EVENT_RECEIVE receives only normal data and that TDI_EVENT_RECEIVE_EXPEDITED receives only urgent data. The prototypes for the two event handlers are the same. Note that the two event handlers are not serialized by the transport.

 AUTONUMLGL
TdiQueryInformation

TDI_STATUS

TdiQueryInformation(PTDI_REQUEST Request, uint QueryType, PNDIS_BUFFER Buffer, uint *BufferSize, uint IsConn)

Called via the TdiQueryInformationEntry pointer in the TdiDispatchTable structure.

This request allows the client to query certain information from the transport.

QueryType indicates which information is being queried. The following values are supported:

TDI_QUERY_PROVIDER_INFO - Queries the transport about provider information. A structure of type TDI_PROVIDER_INFO (see TDI.H) will be copied into the buffer chain pointed to by Buffer.

TDI_QUERY_ADDRESS_INFO - Queries the transport about the local transport of an address object or connection. The query is for a connection if IsConn is TRUE (non-zero), and for an address object if IsConn is FALSE (zero). The address object or connection being queried is specified by Request->Handle. A structure of type TDI_ADDRESS_INFO (see TDI.H) will be copied into the buffer chain pointed to by Buffer.

TDI_QUERY_CONNECTION_INFO - Queries MSTCP for information about the connection identified by Request->Handle.ConnectionContext. A structure of type TDI_CONNECTION_INFO (see TDI.H) will be copied into the buffer chain pointed to by Buffer.

TDI_QUERY_PROVIDER_STATISTICS - Queries the transport for certain statistics. Not all of the defined statistics are kept by MSTCP. A structure of type TDI_PROVIDER_STATISTICS (see TDI.H) will be copied into the buffer chain pointed to by Buffer

Buffer points to an NDIS_BUFFER chain into which the information is copied.

BufferSize points to the size of the input buffer chain in bytes. On return *BufferSize is set to the size of the information copied into Buffer. If the NDIS_BUFFER chain pointed to by Buffer is too small to contain the requested data only the amount that fits is copied and TDI_BUFFER_OVERFLOW is returned.

IsConn is a boolean used to provide additional information for the TDI_QUERY_ADDRESS_INFO call. If IsConn is non-zero than information about a connection is returned. If IsConn is 0 information about an address object is returned.

 AUTONUMLGL
TdiSetInformation

TDI_STATUS

TdiSetInformation(PTDI_REQUEST Request, uint SetType, PNDIS_BUFFER Buffer, uint *BufferSize, uint IsConn)

Called via the TdiSetInformationEntry pointer in the TdiDispatchTable structure.

This call is not supported in MSTCP and always fails.

 AUTONUMLGL
TdiActionInformation

TDI_STATUS

TdiAction(PTDI_REQUEST Request, uint ActionType, PNDIS_BUFFER Buffer, uint *BufferSize,)

Called via the TdiActionEntry pointer in the TdiDispatchTable structure.

This call is not supported in MSTCP and always fails.

TDI_STATUS

TdiQueryInformationEx(PTDI_REQUEST Request, TDIObjectID *ID,

PNDIS_BUFFER Buffer, uint *Size, void *Context)

Called via the TdiQueryInformationExEntry in the TdiDispatchTable structure.

/ TBD /

TDI_STATUS

TdiSetInformationEx(PTDI_REQUEST Request, TDIObjectID *ID, void *Buffer,

uint Size)

Called via the TdiQueryInformationExEntry in the TdiDispatchTable structure.

/ TBD /

Microsoft Confidential
PAGE

